Local interactions in the prosodic structure of Ndebele verbs

Joanna Pietraszko
University of Chicago

WCCFL 34
University of Utah

Disyllabic minimality requirement

1. Minimality effects in the passive stem
 a. \(\{ i - [phwa] \} \rightarrow \{ i - [phiwa] \} \) ‘it is given’
 b. \(\{ i - [phekwa] \} \rightarrow \{ i - [phekwa] \} \) ‘it is cooked’

2. Minimality effects in the participle stem
 a. \(\{ e - [ph] \} \rightarrow \{ e - [sipha] \} \) ‘as he was giving’
 b. \(\{ e - [pheka] \} \rightarrow \{ e - [sipheka] \} \) ‘as he was cooking’

3. No minimality effects in the active stem
 \(\{ u - [ph] \} \rightarrow \{ u - [phi] \} \) \(\rightarrow \) monosyllabic stem

Example derivation: Passive stem

1. PrCA in passive voice:
 Mood
 \(\{ /phi\{\{m\}\} \} \) MinFoot
 Voice
 Mood
 V
 Voice
 st
 the augmenting allomorph

2. Allomorph selection in Voice
 \(/phi\{\{m\}\} \) MinFoot
 Voice
 Mood
 V
 Voice
 st

3. After adding the exponent of Mood\(\rightarrow \):
 a. \(\text{ph} \{ u, n \} \rightarrow \text{ph}, \text{wa} \)
 b. \(\text{phe}, \text{ku} \rightarrow \text{phec}, \text{kwa} \)

Minimality as allomorphy ~ Domain variability

1. No PrCA in active voice:
 Mood
 \(\{ /pha\{\{n\}\} \} \) MinFoot
 Voice
 Mood
 V
 Voice
 st

2. No PrCA in perfect aspect:
 Mood
 \(\{ /phe\{\{n\}\} \} \) MinFoot
 Voice
 Mood
 V
 Voice
 st

Proposal: Prosodically Conditioned Allomorphy

1. PrCA domains:
 - T
 - Asp
 - AgrO
 - Voice

2. Minimality domain for allomorphy in Asp
3. Minimality domain for allomorphy in AgrO
4. Minimality domain for allomorphy in Voice

5. Domain variability corollary:
 A constituent X is a minimality domain if its head is subject to PrCA.

Cyclicity ~ Upward bleeding

1. Upward bleeding: An augmenting allomorph in a lower head bleeds augmenting allomorphs in higher heads, but not vice versa.

Against pre-defined minimality domains

1. A PDomain\(\rightarrow \)MinFoot analysis:
 - Minimal in passive stem: PStem\(\rightarrow \)MinFoot
 - Minimal in participial stem: PMacroStem\(\rightarrow \)MinFoot

2. No global interactions:
 a. \(* a - [ph] \{ m \} \rightarrow [ph] - [w] \)
 b. \(* a - [ph] \{ m \} \rightarrow [phe] - [kwa] \)

3. Resolution of minimality is morpheme-specific
 - Downing: minimality violations trigger epenthesis
 - BUT: There is no single resolution strategy for minimality violations. AgrO: epenthese /u/ Voice\(\rightarrow \)epenthese /s/ Asp\(\rightarrow \)epenthese /m/
 - \(\rightarrow \) Non-uniform resolutions of minimality are unsurprising when viewed as allomorphy: idiosyncrasies of exponents

4. Correlation: minimality domains \(\sim \) morphosyntactic features
 - PDomain\(\rightarrow \)MinFoot-analysis is too strong; PStem must be disyllabic only in the passive, PMacroStem \(\rightarrow \) only in the progressive.
 - Stipulation: which domain is “activated” by which morphosyntactic feature.
 - Under the allomorphy analysis, no such stipulations are needed.

5. Conclusion: (References on the handout)
 - Word-internal minimality effects are Prosodically Conditioned Allomorphy
 - Minimality domains need not be stipulated: they fall out from the syntactic position of the morpheme subject to PrCA.
 - Upward bleeding and domain variability are predicted.

Prosodic domains fall out directly from the syntax (Wagner 2005, Pak 2008)
Terminal nodes are subject to cyclic spell-out (Embick 2010, Svenonius 2012)
PrCA: a morpheme is paired with a set of exponents, and phonological computation immediately determines which allomorph is selected.

MinFoot ~ STRUCTURE

- MinFoot: a minimality constraint penalizing forms smaller than a foot
- STRUCTURE: a markedness constraint penalizing segmental complexity

References on the handout